Publications
The purpose of this review is to demonstrate how dysbiosis of the human microbiome can drive autoimmune disease. Humans are superorganisms. The human body harbors an extensive microbiome, which has been shown to differ in patients with autoimmune diagnoses. Intracellular microbes slow innate immune defenses by dysregulating the vitamin D nuclear receptor, allowing pathogens to accumulate in tissue and blood. Molecular mimicry between pathogen and host causes further dysfunction by interfering with human protein interactions. Autoantibodies may well be created in response to pathogens. The catastrophic failure of human metabolism observed in autoimmune disease results from a common underlying pathogenesis – the successive accumulation of pathogens into the microbiome over time, and the ability of such pathogens to dysregulate gene transcription, translation, and human metabolic processes. Autoimmune diseases are more likely passed in families because of the inheritance of a familial microbiome, rather than Mendelian inheritance of genetic abnormalities. We can stimulate innate immune defenses and allow patients to target pathogens, but cell death results in immunopathology.
Chronic fatigue syndrome (CFS) is an often-debilitating condition of unknown origin. There is a general consensus among CFS researchers that the symptoms seem to reflect an ongoing immune response, perhaps due to viral infection. Thus, most CFS research has focused upon trying to uncover that putative immune system dysfunction or specific pathogenic agent. However, no single causative agent has been found. In this speculative article, I describe a new hypothesis for the etiology of CFS: infection of the vagus nerve. When immune cells of otherwise healthy individuals detect any peripheral infection, they release proinflammatory cytokines. Chemoreceptors of the sensory vagus nerve detect these localized proinflammatory cytokines, and send a signal to the brain to initiate sickness behavior. Sickness behavior is an involuntary response that includes fatigue, fever, myalgia, depression, and other symptoms that overlap with CFS. The vagus nerve infection hypothesis of CFS contends that CFS symptoms are a pathologically exaggerated version of normal sickness behavior that can occur when sensory vagal ganglia or paraganglia are themselves infected with any virus or bacteria. Drawing upon relevant findings from the neuropathic pain literature, I explain how pathogen-activated glial cells can bombard the sensory vagus nerve with proinflammatory cytokines and other neuroexcitatory substances, initiating an exaggerated and intractable sickness behavior signal. According to this hypothesis, any pathogenic infection of the vagus nerve can cause CFS, which resolves the ongoing controversy about finding a single pathogen. The vagus nerve infection hypothesis offers testable hypotheses for researchers, animal models, and specific treatment strategies.
The prevailing theory of autoimmune disease, that the body creates autoantibodies that attack “self,” was developed during an era when culture-based methods vastly underestimated the number of microbes capable of persisting in and on Homo sapiens. Thanks to the advent of culture-independent tools, the human body is now known to harbor billions of microbes whose collective genomes work in concert with the human genome. Thus, the human genome can no longer be studied in isolation. Some of these microbes persist by slowing the activity of the vitamin D receptor nuclear receptor, affecting the expression of endogenous antimicrobials and other key components of the innate immune system. It seems that bacteria that cause autoimmune disease accumulate over a lifetime, with individuals picking up pathogens with greater ease over time, as the immune response becomes increasingly compromised. Any one autoimmune disease is likely due to many different microbes within the metagenomic microbiota. This helps explain the high levels of comorbidity observed among patients with autoimmune conditions. What are commonly believed to be autoantibodies may instead be created in response to this metagenomic microbiota when the adaptive immune system is forced to deal with disintegration of infected cells. Similarly, haplotypes associated with autoimmune conditions vary widely among individuals and populations. They are more suggestive of a regional infectious model rather than a model in which an illness is caused by inherited variation of HLA haplotypes
An extensive microbiome comprised of bacteria, viruses, bacteriophages, and fungi is now understood to persist in nearly every human body site, including tissue and blood. The genomes of these microbes continually interact with the human genome in order to regulate host metabolism. Many components of this microbiome are capable of both commensal and pathogenic activity. They are additionally able to persist in both “acute” and chronic forms. Inflammatory conditions historically studied separately (autoimmune, neurological and malignant) are now repeatedly tied to a common trend: imbalance or dysbiosis of these microbial ecosystems. Population-based studies of the microbiome can shed light on this dysbiosis. However, it is the collective activity of the microbiome that drives inflammatory processes via complex microbe-microbe and host-microbe interactions. Many microbes survive as polymicrobial entities in order to evade the immune response. Pathogens in these communities alter their gene expression in ways that promote community-wide virulence. Other microbes persist inside the cells of the immune system, where they directly interfere with host transcription, translation, and DNA repair mechanisms. The numerous proteins and metabolites expressed by these pathogens further dysregulate human gene expression in a manner that promotes imbalance and immunosuppression. Molecular mimicry, or homology between host and microbial proteins, complicates the nature of this interference. When taken together, these microbe-microbe and host-microbe interactions are capable of driving the large-scale failure of human metabolism characteristic of many different inflammatory conditions.